X^n = 1

Xn = 1 真是個有趣又富哲理的題目。

當你理所當然的認為X=1時,很快就會發現題目沒有想像的那麼簡單。因為X2=1就有兩個可能的X。

又當你以為頂多就是1和-1這樣了吧,很快就又被打臉。

因為X4=1就有另外的可能,(X2)2=1,那麼X2 = -1的話,X4也是1。所以虛數i和-i也可以。

更好玩的是X3=1也不只一個可能的X。不信的話,試試看X=(-1+i*sqrt(3)) / 2

所以做人絕對不能太鐵齒。

Convolution and Multiplication

When I first learned Fourier Transformation in signal processing, I was told that the convolution of two signals in time domain (or spatial domain) was equivalent to the multiplication of those two signals in frequency domain.  That was amazing, but I got no intuition about why it worked.

Then one day, it hit me that I had been doing convolution since I was a kid in elementary school.  Every time we multiply two decimal numbers, we are not really performing the multiplication.  We are actually computing the convolution of their digits.  For example, the reason why we know 22*33 is 726 is because we compute the convolution of the two signals (2,2) and (3,3), which gives us the signal (6, 2, 7).  (Note: I put the least significant digit to the left, so they look more like the signal in the “transformed” domain.)

Still didn’t get it?  Then think about this.  What is the meaning of the decimal number system that we have taken for granted?  Imagine the world 5,000 years ago.  How would a farmer count the number of plants in his land?  For example, if he has 22 rows of plants, and 33 plants in each row, how does he count the total number of plants?  Does he know the total is simply 22*33 if he doesn’t yet know the multiplication of two decimal numbers?

  • 22 and 33 are the results of projection to the tens and the singles digits of the decimal system.
  • 726 is the result of the convolution between (2,2) and (3,3).